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Abstract

This paper proposes a numerical procedure for solving the nonlinear partial mixed Volterra-
Fredholm integro-differential equations by two-dimensional triangular function (2D-TFs). The
integration and differentiation in two-dimensional spaces have been presented for an opera-
tionalmatrix on triangular functions, whereas by converting the nonlinear partialmixedVolterra-
Fredholm integro-differential equation to a system of algebraic by using these matrices. Some
numerical examples, have been proposed to obtain the accuracy and effectiveness of themethod.
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1 Introduction

The theory and applications of differential equations contain the majority of scope in applied
science and technology. The partial and integro-differential equations arise in wide fields of ap-
plied problems such as mechanics, physics, engineering, astrophysics, and even in the biology.
For example M. I. Berenguer et. al have applied computational method in [5], the solution of
special class of physical equation has been given in [16], the concept of integral equations has
been presented in [10] and recently in [7] has presented some new method. The concept of two-
dimensional integral equation appears frequently in the theory of plasma physics and finding the
solution of these two-dimensional integral equations is usually necessary [9]. There is no nu-
merical approach with high precision to find solutions to such equations. In the following, we
introduce the special class of two-dimensional integral equation entitled "nonlinear partial mixed
Volterra-Fredholm integral equation" and we construct the numerical solution based on an oper-
ational matrix.
The nonlinear partial mixed Volterra-Fredholm integral equation is defined as follows:

f

(
s, t, u, us, ut, . . . ,

∂n+mu(s, t)

∂sn∂tm

)
+ λ

∫ s

0

∫
Ω

k(s, t, x, y, u(x, y))dydx = 0,

with known extra conditions, as well as the function u(s, t) is an unknown which must be de-
termined, the analytical functions f(s, t) and k(s, t, x, y) defined on D = [0, T ] × Ω and D × Ω2,
respectively; Ω is a closed bounded region in Rn (n = 1, 2, 3) with piecewise smooth boundary
∂Ω [6]. Nowadays, some numerical methods and attempts have been made to find the numerical
solution of the mixed Volterra-Fredholm for instance: He’s variational iteration method [19] and
Homotopy perturbationmethod [18]. The TFs method used properly to approximate the solution
of Fredholm and Volterra integral equations of the second kind [3, 2]. Maleknejad in [12] have
applied a TFs method to find the solution of NVFIs. In [15] the Bernstein polynomials also devel-
oped to solve the two-dimensional integral equation. Maleknejad and Mahdiani have attempted
to applied 2D-BPFs to evaluated the numerical approximation of the nonlinear mixed Volterra-
Fredholm integral equations [14], and Maleknejad in [13] have applied such operational matrix
and TFs for an especial class of mixed Volterra-Fredholm integral equations. The authors have
applied operational matrix for solving two-dimensional (2D) nonlinear integro-differential equa-
tions by BPFs [1]. Ebadian, and Khajehnasiri has used an operational matrix to find the solution
of the nonlinear Volterra integro-differential [11]. Recently, J. Xie in [17] has applied Block-Pulse
functions for another class of nonlinear equations known as Volterra-Fredholm-Hammerstein in-
tegral equations. In current work, the 2D-TFs have been used to evaluate the proper solution of
the Eq. (1).

This article is organized as follows. In Section 2, the TFs theory and their properties have been
presented. In Section 3, we introduce themethod’s application. For better illustration the accuracy
of the proposed methods we displayed some numerical results in Section 4. Finally, at the end of
the paper, we were given some remarks in Section 5.

2 A Brief Presentation and Properties of the Triangular Functions

Throughout this section, we will provide a glimpse into the properties of triangular functions.
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2.1 1-D Triangular Functions

Weusually define the Triangular Functions, which known as one-dimensional triangular func-
tions (1D-TFs) with an m-set on interval [0,1), where ith left hand as well as ith right-hand func-
tions of which are presented such as:

T 1
i (s) =

{
1− s−ih

h , ih ≤ s < (i+ 1)h,
0, otherwise,

T 2
i (s) =

{
s−ih
h , ih ≤ s < (i+ 1)h,

0, otherwise,

where i = 0, ...,m− 1, h = 1
m . Someone could show that

T 1
i (s) + T 2

i (s) = Φi(s), (1)

where Φi(s) is the block-pulse function in ith point would be represent as

Φi(s) =

{
1, ih ≤ s < (i+ 1)h,
0, otherwise.

Clearly {T 1
i (s)}m−1

i=0 and {T 2
i (s)}m−1

i=0 are disjointed. So we have

T1(s) · T1T (s) ' diag(T1(s)) = T̃1(s),

T1(s) · T2T (s) ' 0m×m,

T2(s) · T1T (s) ' 0m×m, (2)
T2(s) · T2T (s) ' diag(T2(s)) = T̃1(s),

where T̃1(s) and T̃2(s) are represented asm×m diagonal matrices [4]. To find the orthogonality
for 1D-TFs we can see [8], which is,∫ 1

0

T pi (s)T qj (s) = ∆p,qδi,j ,

such that δij denotes the Kronecker delta function and

∆p,q =

{
h
3 , p = q ∈ {1, 2},
h
6 , p 6= q.

If we reconsider and define

T1(s) = [T 0
1 (s), T 1

1 (s), · · · , Tm−1
1 (s)]T ,

T2(s) = [T 0
2 (s), T 1

2 (s), · · · , Tm−1
2 (s)]T ,

and
T (s) =

[
T1(s)
T2(s)

]
.
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So, ∫ 1

0

T1(t)T1T (t)dt =

∫ 1

0

T2(t)T2T (t)dt =
h

3
Im×m,∫ 1

0

T1(t)T2T (t)dt =

∫ 1

0

T2(t)T1T (t)dt =
h

6
Im×m.

Expressing
∫ s

0
T1(τ)dτ and

∫ s
0
T2(τ)dτ in which terms including of 1D-TFs follows∫ s

0

T1(τ)dτ = P1s · T1(s) + P2s · T2(s), (3)

∫ s

0

T1(τ)dτ = P1s · T1(s) + P2s · T2(s), (4)

where

P1s =
h

2


0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 0

 ,

P2s =
h

2


1 1 1 . . . 1
0 1 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1

 .

Then, ∫ s

0

T (τ)dτ ' P.T (s),

such that matrix P, which is the operational matrix of integration could be shown in the 1D-TF
domain such as:

P =

[
P1s P2s
P1s P2s

]
.

So, the approximation of integration for function f(τ) can be estimated by∫ s

0

f(τ)dτ '
∫ s

0

CT · T (τ)dτ ' CT · P · T (s).

To find more details about 1D-TFs see [8].
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2.2 Two-Dimensional Triangular Functions

We define 2D-TFs as a set ofm1 ×m2 on the square block of ([0, 1)× [0, 1)) by

T 1,1
i,j (s, t) =


(

1− s−ih1

h1

)(
1− t−jh2

h2

)
ih1 6 s < (i+ 1)h1,

jh2 6 t < (j + 1)h2,
0 otherwise,

(5)

T 1,2
i,j (s, t) =


(

1− s−ih1

h1

)(
t−jh2

h2

)
ih1 6 s < (i+ 1)h1,

jh2 6 t < (j + 1)h2,
0 otherwise,

(6)

T 2,1
i,j (s, t) =


(
s−ih1

h1

)(
1− t−jh2

h2

)
ih1 6 s < (i+ 1)h1,

jh2 6 t < (j + 1)h2,
0 otherwise,

(7)

T 2,2
i,j (s, t) =


(
s−ih1

h1

)(
t−jh2

h2

)
ih1 6 s < (i+ 1)h1,

jh2 6 t < (j + 1)h2,
0 otherwise,

(8)

where i = 0, 1, 2, · · · ,m1−1, j = 0, 1, 2, · · · ,m2−1 and h1 = 1
m1
, h2 = 1

m2
,m1 andm2 are positive

integers as well as arbitrary.

Clearly we have,

T 1,1
i,j (s, t) = T 1

i (s) · T 1
j (t),

T 1,2
i,j (s, t) = T 1

i (s) · T 2
j (t),

T 2,1
i,j (s, t) = T 2

i (s) · T 1
j (t), (9)

T 2,2
i,j (s, t) = T 2

i (s) · T 2
j (t).

Furthermore,
T 1,1
i,j (s, t) + T 1,2

i,j (s, t) + T 2,1
i,j (s, t) + T 2,2

i,j (s, t) = φi,j(s, t),

where φi,j(s, t) is the (i,j)th component of block-pulse function which is defined on ih1 6 s <
(i+ 1)h1 and jh2 6 t < (j + 1)h2 as

φi,j(s, t) =

 1 ih1 6 s < (i+ 1)h1,
jh2 6 t < (j + 1)h2,

0 otherwise.
(10)

Similar to the 1D subsection the important part of the properties of 2D-TFs, are disjointness and
orthogonality. For every set of {T 11

ij (s, t)}, {T 12
ij (s, t)}, {T 21

ij (s, t)} and {T 22
ij (s, t)} are clearly:
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1. Disjointness

The two-dimensional triangular functions are disjoined with each other, i.e.

T p1,q1i1,j1
(s, t) · T p2,q2i2,j2

(s, t) '


T p1,q1i1,j1

(s, t) p1 = p2, q1 = q2,

i1 = i2, j1 = j2,
0 otherwise,

 ,

for p, q ∈ {1, 2}, i1, i2 = 0, 1, 2, · · · ,m1 − 1, and j1, j2 = 0, 1, 2, · · · ,m2 − 1.

2. Orthogonality

We can prove that the 2D-TFs component has the property of orthogonality with the others,
i.e. ∫ 1

0

∫ 1

0

T p1,q1i1,j1
(s, t) · T p2,q2i2,j2

(s, t)dsdt = ∆p1,p2δi1,i2 ·∆q1,q2δj1,j2 ,

where δ denotes the Kronecker delta function, and

∆α,β =

{
h
3 , α = β ∈ {1, 2},
h
6 , α 6= β.

(11)

Nevertheless, if

T11(s, t) = [T 1,1
0,0 (s, t), T 1,1

0,1 (s, t), . . . , T 1,1
m1−1,m2−1(s, t)]T ,

T12(s, t) = [T 1,2
0,0 (s, t), T 1,2

0,1 (s, t), . . . , T 1,2
m1−1,m2−1(s, t)]T ,

T21(s, t) = [T 2,1
0,0 (s, t), T 2,1

0,1 (s, t), . . . , T 2,1
m1−1,m2−1(s, t)]T ,

T22(s, t) = [T 2,2
0,0 (s, t), T 2,2

0,1 (s, t), . . . , T 2,2
m1−1,m2−1(s, t)]T ,

then, we can defined the 2D-TF vector of T (s, t), as

T (s, t) =


T11(s, t)
T12(s, t)
T21(s, t)
T22(s, t)


4m1m2×1

. (12)

By eliminating the pair variables (s, t) from T (s, t), T11(s, t), T12(s, t), T21(s, t) and T22(s, t), we
simplify the concept and understanding. In light of previous representations, it follows that

T11 · TT11 '


T 1,1

11 0 · · · 0

0 TT11 · · ·
...

...
...

. . . 0

0 0 . . . T 1,1
m1−1,m2−1

 = diag(T1,1),

T11 · TT12 ' 0m1m2×m1m2
,

T11 · TT21 ' 0m1m2×m1m2
,

T11 · TT22 ' 0m1m2×m1m2
.
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We can see similarly that above relations are completely satisfied for T12(s, t), T21(s, t) and T22(s, t).
Therefore,

T · TT '


diag(T1,1) 0m1m2×m1m2

0m1m2×m1m2
0m1m2×m1m2

0m1m2×m1m2
diag(T1,2) 0m1m2×m1m2

0m1m2×m1m2

0m1m2×m1m2 0m1m2×m1m2 diag(T2,1) 0m1m2×m1m2

0m1m2×m1m2 0m1m2×m1m2 0m1m2×m1m2 diag(T2,2)

 , (13)

or
T (s, t) · TT (s, t) ' diag(T (s, t)) = T̃ (s, t).

Also,
T (s, t) · TT (s, t) ·X ' X̃ · T (s, t),

in which X̃ = diag(X) and X represented as 4m1m2-vector.

By the disjointness property of T11(s, t), T12(s, t), T21(s, t) and T22(s, t)also implies that for
every (4m1m2 × 4m1m2)-matrix A

TT (s, t) ·A · T (s, t) ' Â · T (s, t),

where Â is a 4m1m2-vector with elements that are the same diagonal matrix A.

2.3 2D-TFs Expansion

We may extended using 2D-TFs and define the function u(s, t) on the square block of ([0, 1)×
[0, 1)) as follow.

u(s, t) '
m1−1∑
i=0

m2−1∑
j=0

ci,jT
1,1
i,j +

m1−1∑
i=0

m2−1∑
j=0

di,jT
1,2
i,j +

m1−1∑
i=0

m2−1∑
j=0

ei,jT
1,1
i,j +

m1−1∑
i=0

m2−1∑
j=0

li,jT
2,2
i,j ,

= CT1 · T11(s, t) + CT2 · T12(s, t) + CT3 T21(s, t) + CT4 · T22(s, t),

= CT · T (s, t), (14)

such that C is a 4m1m2 -vector defined by

C = [CT1 CT2 CT3 CT4 ]T , (15)

and T (s, t) is given in Eq. (12). The 2D-TFs components in C1, C2, C3, and C4 could be evaluated
by the function u(s, t) at grid points si and tj where si = ih1 and tj = jh2, for different i and j.
So,

C1k = ci,j = u(si, tj), C2k = di,j = u(si, tj+1),

C3k = ei,j = u(si+1, tj), C14k = li,j = u(si+1, tj+1), (16)
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where k = im2 + j and i = 0, 1, · · · ,m1− 1, j = 0, 1, · · · ,m2− 1, the 4m1m2-vector C is called the
2D-TF coefficient vector. Furthermore, we can approximated using 2D-TFs for the positive integer
powers of a function u(s, t) as

[u(s, t)]p ' CTp · T (s, t),

such that Cp is a column vector such that those elements are pth powers of the elements for the
vector C.

Suppose that k(s, t, x, y) be a four variables function on ([0, 1)× [0, 1)× [0, 1)× [0, 1)). We can
approximated with respect to 2D-TFs such as:

k(s, t, x, y) = TT (s, t) ·K · T (x, y), (17)

where both of T (s, t) and T (x, y) are dimensional vectors of 2D-TFs 4m1m2 and 4m3m4, respec-
tively,K is the 2D-TF coefficientsmatrix of (4m1m2)×(4m3m4) andmay be computed by sampling
the function k(s, t, x, y) [2, 1]. Now, we using (14), every element of 1D-TFs which is am1-set, can
be expanded with respect to anm1 ×m2-set of 2D-TFs. For T 1

0 (s) we have

T 1
0 (s) ' [C1T C2T C3T C4T ] · T (s, t).

Since t does not appear in T 1
0 (s), Eqs. (16) lead to

C1k = C2k = T 1
0 (si) =

{
1 k = 1, 2, · · · ,m2,
0 k = m2 + 1, · · · ,m1m2,

C3k = C4k = T 1
0 (si+1) = 0, k = 1, 2, · · · ,m2.

Another components of T (s) could be expanded in such way. therefore

T (s) 'M2m1×4m1m2 · T (s, t),

where

M =

[
Im1×m1

Im1×m1
0m1×m1

0m1×m1

0m1×m1 0m1×m1 Im1×m1 Im1×m1

]
⊗ 11×m2 ,

and ⊗ denotes the Kronecker product which can represent for two matrices P and Q as

P ⊗Q = (pi,jQ). (18)

Hence, the Kronecker product of vector 11×m2
from right side in any matrix or vector produces

m2-repetition of each component in the row in which it appears.

2.4 The Operational Matrix of TFs for Integration

Within this subsection, we present the TFs for Integration that are derived from the proposed
operational matrix. In this approach we try to evaluate the double integral of

∫ s
0

∫ 1

0
u(x, y)dydx.
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We need to evaluate above integral for vector T (x, y). From Eqs. (9), we could evaluate separately
the integrals with respect to x and y. During this approach to find the evaluation, we represent an
operational matrix for approximating the integration with respect to x in

∫ s
0

∫ 1

0
T (x, y)dydx. Let

Ts(x) be the x-components of T (x, y). We may write

Ts(x) =



T 1
0 (x)

...
T 1

0 (x)

 2m2 times

T 1
1 (x)

...
T 1

1 (x)

 2m2 times

...
T 2
m1−1(x)

...
Tm1 − 12(x)

 2m2 times


4m1m2×1

=


T1(x)
T1(x)
T2(x)
T2(x)


4m1×1

⊗ 1m2×1

Using Eqs. (3) and (4), we can approximate the integral of Ts(x) as

∫ s

0

Ts(x)dx '



P1s P2s
P1s P2s
P1s P2s
P1s P2s

⊗ 1m2×1

 · T (s),

'



P1s P2s
P1s P2s
P1s P2s
P1s P2s

⊗ 1m2×1

 ·M · T (s, t),

= E · T (s, t), (19)

in which E is a (4m1m2 × 4m1m2)-matrix as follows:

E =



P1s P2s
P1s P2s
P1s P2s
P1s P2s

⊗ 1m2×1

 ·
([

I I 0 0
0 0 I I

]
2m1×4m1

⊗ 11×m2

)
,

=


P1s P1s P2s P2s
P1s P1s P2s P2s
P1s P1s P2s P2s
P1s P1s P2s P2s

⊗ 1m2×1. (20)

More details may be found in [13].

2.4.1 Product Properties

In this subsection, we estimates the product and their properties of which for the problem. We
need the following procedure to approximate T (s, t) · TT (s, t).
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Each component of this matrix from Eqs. (9), can be represented separately as the production of
two terms with respect to variables s and t. Hence,

T (s, t) · TT (s, t) = [Aij(s)Bij(t)]i,j=1,2,··· ,4m1m2
, (21)

such that A(s) and B(t) are (4m1m2 × 4m1m2)-matrices and must be computed. The disjoint
property of {T 1

i (s)}m1−1
i=0 and {T 2

i (s)}m1−1
i=0 Eqs. (2) and (9) that

A(s) =



T1(s)

T1(s)

T2(s)

T2(s)

⊗ 1m2×1

 · ([ T1T (s), T1T (s), T2T (s), T2T (s)
]
⊗ 11×m2

)
,

'


T̃1(s) T̃1(s) 0 0

T̃1(s) T̃1(s) 0 0

0 0 T̃2(s) T̃2(s)

0 0 T̃2(s) T̃2(s)

⊗ 1m2×m2
. (22)

Furthermore, the disjointness property of {T 1
j (t)}m2−1

j=0 and {T 2
j (t)}m2−1

j=0 implies that

B(t) =


1m1×1 ⊗ T1
1m1×1 ⊗ T2
1m1×1 ⊗ T1
1m1×1 ⊗ T2

 · [ 11×m1
⊗ T1, 11×m1

⊗ T2, 11×m1
⊗ T1, 11×m1

⊗ T2
]
,

and in definition the (t) term in T1(t) and T2(t) is omitted, for reliability. So,

B(t) '
[
Bq(t) Bq(t)
Bq(t) Bq(t)

]
, (23)

where Bq(t) is a (2m1m2 × 2m1m2)-matrix of the form

Bq(t) '
[

1m1×m1
⊗ (T̃1 · T̃1) 1m1×m1

⊗ (T̃1 · T̃2)

1m1×m1 ⊗ (T̃1 · T̃2) 1m1×m1 ⊗ (T̃2 · T̃2)

]
.

We have to reform how the matrices A(s) and B(t) are approximated in Eqs. (22) and (23). In
spite of the fact that all blocks in B(t) are diagonal matrices, one may rewrite the Eq. (21) such as

T (s, t) · TT (s, t) '


Q̃11(s, t) Q̃12(s, t) 0 0

Q̃12(s, t) Q̃13(s, t) 0 0

0 0 Q̃21(s, t) Q̃22(s, t)

0 0 Q̃22(s, t) Q̃23(s, t)

 , (24)
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in which by considering

A1(s) = trace(T̃1(s)⊗ 1m2×m2),

A2(s) = trace(T̃2(s)⊗ 1m2×m2),

B1(t) = trace(1m1×m1 ⊗ (T̃1(t) · T̃1(t))),

B2(t) = trace(1m1×m1 ⊗ (T̃1(t) · T̃2(t))),

B3(t) = trace(1m1×m1 ⊗ (T̃2(t) · T̃2(t))),

we have,

(Q11)k = (A1)k · (B1)k,

(Q12)k = (A1)k · (B2)k,

(Q13)k = (A1)k · (B3)k,

(Q21)k = (A2)k · (B1)k, (25)
(Q22)k = (A2)k · (B2)k,

(Q23)k = (A2)k · (B3)k,

for k = 1, 2, · · · ,m1m2. Now, let X be a 4m1m2-vector as

X = [XT
1 , XT

2 , XT
3 , XT

4 ]T , (26)

where X1, X2, X3 and X4 arem1m2-vectors. It can be derived from Eqs. (24) to (25) that

T (s, t) · TT (s, t) ·X '


Q̃11(s, t) Q̃12(s, t) 0 0

Q̃12(s, t) Q̃13(s, t) 0 0

0 0 Q̃21(s, t) Q̃22(s, t)

0 0 Q̃22(s, t) Q̃23(s, t)



X1

X2

X3

X4

 ,

=


X̃1 · B̃1 X̃2 · B̃2 0 0

X̃1 · B̃2 X̃2 · B̃3 0 0

0 0 X̃3 · B̃1 X̃4 · B̃2

0 0 X̃3 · B̃2 X̃4 · B̃2



A1

A1

A2

A2

 ,

=


B̃1 B̃2 0 0

B̃2 B̃3 0 0

0 0 B̃1 B̃2

0 0 B̃2 B̃3



X̃1 0 0 0

0 X̃2 0 0

0 0 X̃3 0

0 0 0 X̃4



A1

A1

A2

A2

 ,
= R(t) · X̃ · Ts(s). (27)

Hence, components s and t can be decomposed into vectors Ts(s) and matrix R(t), respectively.
In addition, that s-components are aggregated in the last vector. For further details, one may refer
[13].
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2.5 Operational Matrix of TFs for Differentiation

Finding an approximate solution involves constructing a differentiation for the problem by
adding its conditions. This subsection presents a differentiation matrix based on the proposed
operational matrix. Using these initial conditions based on proposed operational matrices, we
can write :

u(s, t) = UTT (s, t),

u(s, 0) = UTs0T (s, t),

u(0, t) = UT0tT (s, t),

ut(s, t) = UTt T (s, t),

us(s, t) = UTs T (s, t), (28)
ut(s, 0) = UTts0T (s, t),

utt(s, t) = UTttT (s, t),

us(0, s) = UTs0tT (s, t),

uss(s, t) = UTssT (s, t),

ust(s, t) = UTstT (s, t),

where some boundary and initial conditions simply can be calculated. We can use the following
procedure to operational matrix of TFs for differentiation for UTt , UTs , UTtt , UssT , and UTst. To
find operational matrix of TFs for UTt we can write the fundamental theorem of calculus down as
follows:

u(s, t)− u(s, 0) =

∫ t

0

ut(s, τ)dτ. (29)

From (28), we obtain

UTT (s, t)− UTs0T (s, t) =

∫ t

0

UTt T (s, τ)dτ,

= UTt

∫ t

0

T (s, τ)dτ = UTt PT (s, t).

Thus, we get

UT − UTs0 = UTt P. (30)

Then,

UTt = (UT − UTs0)P−1. (31)

In similar way, to find operational matrix of TFs for UTs we have

UTs = (UT − UT0t)P−1. (32)
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In the similar approach, the fundamental theorem of calculus can be used to approximate the
operational matrix of TFs for UTtt as follows;

ut(s, t)− ut(s, 0) =

∫ t

0

utt(s, τ)dτ. (33)

By using (28), we have

UTt T (s, t)− UTts0T (s, t) =

∫ t

0

UTttT (s, τ)dτ,

= UTtt

∫ t

0

T (s, τ)dτ = UTttPT (s, t).

Thus, we get

UTt − UTts0 = UTttP. (34)

Then,

UTtt = (UTt − UTts0)P−1. (35)

In the same approach, we can approximate uss(s, t) in the form of the following equation

UTss = (UTs − UTs0t)P−1. (36)

At the end of our procedure we can approximate ust(s, t) and use the following procedure:

ut(s, t)− ut(t, 0) =

∫ t

0

ust(t, τ)dτ. (37)

Hence,

UTs T (s, t)− UTs0tT (s, t) =

∫ t

0

UTstT (s, τ)dτ,

= UTst

∫ t

0

T (s, τ)dτ = UTstPT (s, t).

So, we get

UTs − UTs0t = UTstP. (38)

Then, we have

UTst = (UTs − UTs0t)P−1. (39)

Finally, we could using such proposed method to evaluate and expand the operational matrix
for orderm by the way.
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3 Applying the Method

By using 2D-TFs, the main approach of this section would be finding the solution of nonlinear
two-dimensional mixed Volterra–Fredholm integro-differential equations. Since we show already
some of the following statements, one may can conclude and write that:

u(s, t) = UTT (s, t),

f(s, t) = FTT (s, t),

[u(x, y)]p = TT (x, y)Cp,

uss(s, t) = UTssT (s, t), (40)
utt(s, t) = UTttT (s, t),

uts(s, t) = UTtsT (s, t),

k(s, t, x, y) = TT (s, t) ·K · T (x, y),

where them1m2-vectorsU,G,Cp, Us, Ut, Uss, Utt, Uts andmatrixK are the TFs coefficients ofu(s, t),
f(s, t), [u(s, y)]p, us(s, t), ut(s, t), uss(s, t), utt(s, t), ust and K(s, t, x, y) respectively. Now, con-
sider the following equation,

uss + uts + utt + u(s, t) = f(s, t) +

∫ s

0

∫ 1

0

k(s, t, x, y)[u(x, y)]pdydx. (41)

The proposed equations and by using (19), (27) and (40), we can conclude that

TT (s, t)(Uss + Uts + Utt + U) = TT (s, t) · F +

∫ s

0

∫ 1

0

k(s, t, x, y)[u(x, y)]pdydx,

' TT (s, t) · F +

∫ s

0

∫ 1

0

TT (s, t) ·K · T (x, y) · TT (x, y) · Cpdydx,

= TT (s, t) · F + TT (s, t) ·K ·
∫ s

0

∫ 1

0

T (x, y) · TT (x, y) · Cpdydx,

' TT (s, t) · F + TT (s, t) ·K ·
∫ s

0

∫ 1

0

R(y) · C̃p · Ts(x)dydx,

= TT (s, t) · F + TT (s, t) ·K ·
∫ 1

0

R(y)dy · C̃p ·
∫ s

0

Ts(x)dx, (42)

where (4m1m2 × 4m1m2)-matrix R(y) and 4m1m2-vector Ts(x) are determined in Eq. (27). The
first integral approximation in Eq. (42) can be revaluated as follows.

∫ 1

0

R(y)dy '
∫ 1

0


B̃1(y) B̃2(y) 0 0

B̃2(y) B̃3(y) 0 0

0 0 B̃1 B̃2

0 0 B̃2 B̃3

 dy, (43)

'


h2

3 I1
h2

6 I1 0 0
h2

6 I1
h2

3 I1 0 0

0 0 h2

3 I1
h2

6 I1
0 0 h2

6 I1
h2

3 I1

 = Υ,
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where we put I1 = Im1m2×m1m2
, for convenience. So,∫ s

0

∫ 1

0

k(s, t, x, y)[u(x, y)]pdydx ' TT (s, t) ·
(
K ·Υ · C̃p · E

)
· T (s, t), (44)

' (K̂ΥC̃pE) · T (s, t), (45)

where (K̂ΥC̃pE) is a 4m1m2-vector with components which are equal to the diagonal components
of the matrixKΥC̃pE. Since C̃p is a diagonal matrix, we get

(K̂ΥC̃pE) = Π · Cp, (46)

in which Π is a (4m1m2 × 4m1m2)-matrix with components

Πi,j = (KΥ)i,j · Ej,i, i, j = 1, 2, · · · , 4m1m2. (47)

TT (s, t)(Uss + Uts + Utt + U) = TT (s, t) · F + TT (s, t) ·Π · Cp.

Hence, we have

Uss + Uts + Utt + U = F + Π · Cp. (48)

Now, using Equations (31), (32), (35), (36), (39), and (48) we can derive a nonlinear system, also
we can use the Newton-Raphson method in order to find the solution of which. Therefore, the
approximate solution

u(s, t) = UTT (s, t), (49)

can be computed for Eq. (41).

4 Numerical Results

In this section we explain the results obtained with some experiments of nonlinear mixed
Volterra-Fredholm integral-differential equations. We use the exact solution in all examples as
well as the supplementary initial conditions. The TFs method described in this paper offers a pro-
cedure that is practical for finding numerical solutions of examples. The following error function
can be used to evaluate both the results of exact solutions and their associated error.

e(s, t) =| u(s, t)− ūm1,m2(s, t) |,

where u(s, t) is the exact solution and ūm1,m2(s, t) is the approximate solutions of the integral
equation. Tables 1-2 contain the values of e(s, t) with the different values of m1 and m2 which is
computed as well as displayed over the set

Dgrids = {(0.0, 0.0), (0.1, 0.1), (0.2, 0.2) · · · , (0.9, 0.9)} . (50)
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Example 4.1. Let the following equation for the first example as:

∂2u(s, t)

∂s2
+ t3u(s, t) +

∫ t

0

∫ 1

0

y2e2zu2(y, z)dydz = g(s, t), s, t ∈ [0, 1],

where

g(s, t) = − 1

12
t3 +

1

12
t3e2 − t3es−t + tes−t,

where the u(s, t) = tes−t is the exact solution of this problem with supplementary conditions:

u(0, t) = te−t,
∂u

∂s
(0, t) = te−t. (51)

The results of the numerical solution of this example is displayed in Table 1.

Example 4.2. For the second example, let the two-dimensionalmixedVolterra–Fredholm integro-differential
equation as

∂2u(s, t)

∂t2
+ u(s, t) +

∫ t

0

∫ 1

0

s2ey+zu(y, z)dydz = g(s, t), s, t ∈ [0, 1],

where

g(s, t) = −1

2
s2t+

1

2
s2e2t+ 2es+t,

where u(s, t) = es+t is the exact solution of this problem and the supplementary conditions are

u(s, 0) = es,
∂u

∂t
(s, 0) = es,

in Table 2, the numerical solutions are presented.

Table 1: Error estimation related to the Example 1.

s = t e(s,t) e(s,t) e(s,t)
m1 = m2 = 4 m1 = m2 = 8 m1 = m2 = 32

0 2.15412× 10−2 1.17425× 10−3 2.12965× 10−5

0.1 1.12941× 10−2 1.53289× 10−3 1.24598× 10−5

0.2 5.24154× 10−2 1.36692× 10−3 1.26548× 10−4

0.3 8.22541× 10−2 2.30314× 10−3 2.52784× 10−4

0.4 7.15222× 10−2 8.02847× 10−3 8.15252× 10−4

0.5 1.25859× 10−2 7.01514× 10−2 2.23160× 10−4

0.6 2.26554× 10−2 2.72514× 10−2 5.46124× 10−4

0.7 2.25541× 10−2 1.12342× 10−2 7.12464× 10−4

0.8 3.27514× 10−2 7.06458× 10−2 1.02100× 10−3

0.9 4.17894× 10−2 3.00872× 10−2 5.02154× 10−3
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Table 2: Error estimation related to the Example 2.

s = t e(s,t) e(s,t) e(s,t)
m1 = m2 = 4 m1 = m2 = 8 m1 = m2 = 32

0 2.65214× 10−2 5.36982× 10−3 2.10963× 10−5

0.1 2.36541× 10−2 4.25209× 10−3 2.60058× 10−5

0.2 2.12010× 10−2 1.21405× 10−3 1.20118× 10−5

0.3 5.20514× 10−2 1.98740× 10−3 2.25124× 10−4

0.4 4.95022× 10−2 2.25014× 10−3 1.02524× 10−4

0.5 1.25142× 10−2 2.25140× 10−3 4.11263× 10−4

0.6 3.25478× 10−2 1.25105× 10−2 1.24502× 10−4

0.7 1.21540× 10−2 9.14050× 10−2 2.41298× 10−4

0.8 2.55840× 10−2 7.29825× 10−2 2.25487× 10−3

0.9 2.36542× 10−2 1.25005× 10−2 5.95015× 10−3

Figure 1: Comparing exact (Right) and numerical (Left) solutions, u(s, t), withm1 = m2 = 32 for example 1.
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Figure 2: Comparing exact (Right) and numerical (Left) solutions, u(s, t), withm1 = m2 = 32 for example 2.

5 Conclusion

In this paper, the TFs have been successfully employed to find the approximate solution of the
nonlinearmixed Volterra-Fredholm integro-differential equations. Thismethod for constructing a
system of algebraic equations without using any projection method like the Collocation, Galerkin,
and so on. The biggest advantage of the method is the low cost of computational operations.
The accuracy and applicability have been investigated in some examples. The results have been
proving the accuracy of the methods which stand at an adequate level of satisfaction. Moreover,
to reach an appropriate accuracy, we can increase the rate ofm1 andm2.
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